High power green laser pointers from huangxiangfeng's blog

Buy Laser Pointer

IN THE LAST 20 years, green lasers have shrunk from table-size lab equipment to pocket-portable presentation tools (not to mention cat toys). But making laser pointer 30mw a household item may have come at a cost. A new study from the National Institute of Standards and Technology reports that some cheap laser pointers can emit more than 10 times as much invisible infrared light as bright green light, making them more likely to blind kids and pets.

“It’s a serious problem,” said NIST physicist Charles Clark, a coauthor of the study. “If green goes into your eye, you’ll probably blink because you can see the green. But with infrared, you won’t blink. The first indication that you have that infrared is coming in is that you’d start to lose your vision.”

20mw green laser pointer

Luckily, there’s a science fair-worthy way to test your laser pointer for safety. All you need is a digital camera, a webcam, a CD and a few paper cups.

When green laser pointers first hit the market in the 1990s, they would set you back about $400. These days, they go for as low as $7.75 on Amazon. The average pointer makes its bright beam of light in three steps, each of which was a highlight in laser development when it first came out. “It’s like a little lesson on quantum physics all in itself,” Clark said.

The trick is to convert two photons of long-wavelength, low-energy infrared light into one photon of short-wavelength, high-energy green light in a process called frequency doubling. First, two AAA batteries fuel a diode laser — similar to a standard laser pointer 20mw — which emits infrared light at a wavelength of 808 nanometers. That light gets funneled into a crystal of a material called neodymium-doped yttrium orthovanadate, which is common to lab lasers. The crystal’s electrons respond by getting excited and emitting infrared light at 1064 nanometers, which goes through a second crystal made of potassium titanyl phosphate. That crystal combines two infrared photons into one photon with half the wavelength and double the energy, the familiar 532-nanometer green light.

5in1 20mw green laser5in1 20mw green laser

The standard green laser pointer also includes a shield to keep any of the infrared light from escaping. But in the pointer that Clark and his colleagues examined, the shield was entirely missing. There wasn’t even a holder where a shield should be.

“That was a design choice,” said NIST physicist Edward Hagley, a coauthor of the study. “What we think happened is, if one of the suppliers decides to get rid of the filter and save 50 cents, they can reduce the price a little bit and drive everybody out of business. Then everybody else has to do the same thing.”

Hagley noticed the problem when he bought three $15 laser pointer 10mw last December as Christmas presents for his in-laws. Each pointer claimed to emit 10 milliwatts of power, but one of them glowed with a much dimmer green beam. Not only was the dim pointer missing its infrared shield, it also turned out to emit 20 milliwatts of invisible infrared light during normal use. The extra infrared is probably due to a misalignment between the diode laser and the crystals, making the conversion from infrared to green light less efficient.

The total power isn’t that much, about a thousandth of the output of a typical flashlight, Hagley noted. The danger is that laser light is a focused beam of a single wavelength of light, meaning 20 milliwats is enough to burn a hole in your retina before you blink.

“It is a very big safety hazard,” Hagley said. “People who have these laser pointers shouldn’t think they’re safe just because they’re not outputting much green. I know my kids would stick them right in their eyes. And that would be bad.”


     Next post
     Blog home

The Wall

No comments
You need to sign in to comment